Regd. Office: 2nd Floor, Grand Plaza, Fraser Road, Dak Bunglow, Patna - 800001
JEE Main 2023 (Memory based)
25 January 2023-Shift 1
Answer \& Solutions

PHYSICS

1. A car moving with constant speed of $2 \mathrm{~m} / \mathrm{s}$ in circle having radius R. A pendulum is suspended from the ceiling of car. Find the angle made by the pendulum with the vertical. Take $R=8 / 15 \mathrm{~m}$ and $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
A. 30°
B. 53°
C. 37°
D. 60°

Answer (C)

Solution:

$T \sin \theta=\frac{m v^{2}}{R}$
$T \cos \theta=m g$
$\tan \theta=\frac{v^{2}}{R g}=\frac{4}{\frac{8}{15} \times 10}=\frac{3}{4}$
$\theta=37^{\circ}$

2. A particle is dropped inside a tunnel of the earth about any diameter. Particle starts oscillating, with time period T. ($R=$ Radius of earth, $g=$ acceleration due to gravity on earth's surface). Then find T.
A. $T=2 \pi \sqrt{\frac{R}{g}}$
B. $T=\pi \sqrt{\frac{R}{g}}$
C. $T=2 \pi \sqrt{\frac{2 R}{g}}$
D. $T=2 \pi \sqrt{\frac{3 R}{g}}$

Answer (A)

Solution:

Restoring force, $F=-\frac{G M m r}{R^{3}}$
$m \frac{d v}{d t}=-\left(\frac{G M m}{R^{3}}\right) r$
$\frac{d v}{d t}=-\left(\frac{G M}{R^{3}}\right) r=-\left(\frac{g}{R}\right) r$
$\omega=\sqrt{\frac{g}{R}}$
$T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{R}{g}}$
3. A massless rod is arranged as shown:

Find the tension in the string. (Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$.)
A. 320 N
B. 640 N
C. 160 N
D. 480 N

Answer (A)

Solution:

Balancing the torque on the rod about the point of contact with the wall:

$$
\begin{aligned}
& \left(T \sin 30^{\circ}\right) \times 40=(m g) \times(40+40) \\
& T=320 N
\end{aligned}
$$

4. A Carnot engine working between a source and a sink at 200 K has efficiency of 50%. Another Carnot engine working between the same source and another sink with unknown temperature T has efficiency of 75%. The value of T is equal to
A. 400 K
B. 300 K
C. 200 K
D. 100 K

Answer (D)

Solution:

Let the source temperature of first engine is T.
$\eta=1-\frac{200}{T}=\frac{50}{100}$
$\Rightarrow T=400 \mathrm{~K}$
Let the source temperature of second engine is T.
$\eta=1-\frac{T^{\prime}}{400}=\frac{75}{100}$
$\Rightarrow T^{\prime}=100 \mathrm{~K}$
5. Mark the option correctly matching the following columns with appropriate dimensions.

Column-1	Column-2
A-Surface Tension	$P-\left[M L^{-1} T^{-2}\right]$
B-Pressure	$Q-\left[M T^{-2}\right]$
C-Viscosity	$R-\left[M L T^{-1}\right]$
D-Impulse	$S-\left[M L^{-1} T^{-1}\right]$

A. $A-Q, B-P, C-R, D-S$
B. $A-Q, B-P, C-S, D-R$
C. $A-S, B-Q, C-P, D-R$
D. $A-R, B-P, C-Q, D-S$

Answer (B)

Solution:

$$
\begin{aligned}
& {[\text { Surface tension }]=\left[\frac{F}{L}\right]=\left[M T^{-2}\right]} \\
& {[\text { Pressure }]=\left[\frac{F}{A}\right]=\frac{\left[M L T^{-2}\right]}{\left[L^{2}\right]}=\left[M L^{-1} T^{-2}\right]} \\
& {[\text { Viscosity }]=\left[\frac{F}{r v}\right]=\frac{\left[M L T^{-2}\right]}{\left[L . L T^{-1}\right]}=\left[M L^{-1} T^{-1}\right]} \\
& {[\text { Impulse }]=[F t]=\left[M L T^{-1}\right]}
\end{aligned}
$$

6. In the series sequence of two engines E_{1} and E_{2} as shown. $T_{1}=600 \mathrm{~K}$ and $T_{2}=300 \mathrm{~K}$. It is given that both the engines working on Carnot principle have same efficiency, then temperature T at which exhaust of E_{1} is fed into E_{2} is equal to $300 \sqrt{n} K$. Value of n is equal to \qquad _.

Answer (2.0)

Solution:

$\eta_{1}=1-\frac{T_{1}}{600}$
$\eta_{2}=1-\frac{300}{T}$
Given: $\eta_{1}=\eta_{2}$
$\Rightarrow \frac{T}{600}=\frac{300}{T}$
$\Rightarrow T=\sqrt{180000} K=300 \sqrt{2} K$

$\Rightarrow n=2$
7. A solenoid of length $2 m$, has 1200 turns. The magnetic field inside the solenoid, when $2 A$ current is passed through it is $N \times \pi \times 10^{-5} T$. Find the value of N. (Diameter of solenoid is 0.5 m)

Answer (48.0)

Solution:

Magnetic field inside solenoid $=\mu_{o} n i$
where $n=$ Number of turns per unit length $=1200 / 2=600 \mathrm{turns} / \mathrm{m}$

$$
\begin{aligned}
B_{\text {solenoid }}=\mu_{o} n i & =\left(4 \pi \times 10^{-7} \times 600 \times 2\right) T \\
& =8 \pi \times 10^{-7} \times 600 \mathrm{~T} \\
& =48 \pi \times 10^{-5} \mathrm{~T}
\end{aligned}
$$

8. Consider a network of resistors as shown. Find the effective resistance (in Ω) across A and B.

Answer (5.0)

Solution:

Effectively, the network is

$$
\begin{aligned}
R_{A B} & =1 \Omega+\frac{2 \times 2}{2+2} \Omega+3 \Omega \\
& =5 \Omega
\end{aligned}
$$

9. Find the ratio of density of $\operatorname{Oxygen}\left(\mathrm{O}_{8}^{16}\right)$ to the density of $\operatorname{Helium}\left(\mathrm{He}_{2}^{4}\right)$ at $S T P$.

Answer (8.0)

Solution:

We know,

$$
\begin{aligned}
\frac{P}{\rho} & =\frac{R T}{M_{0}} \\
\Rightarrow & \frac{\rho_{1}}{\rho_{2}}=\frac{M_{1}}{M_{2}}=\frac{32}{4}=8
\end{aligned}
$$

10. Consider the following two $L C$ circuit.

Then find ω_{1} / ω_{2}, where ω_{1} and ω_{2} are resonance frequencies of the two circuits.

Answer (4.0)

Solution:

$\omega_{1}=\frac{1}{\sqrt{L C}}$
$\omega_{2}=\frac{1}{\sqrt{8 L \times 2 C}}=\frac{1}{4 \sqrt{L C}}$
$\frac{\omega_{1}}{\omega_{2}}=4$
11. A car moving on a straight-line travels in same direction half of the distance with uniform velocity v_{1} and other half of the distance with uniform velocity v_{2}. Average velocity of the car is equal to
A. $2 v_{1} v_{2} /\left(v_{1}+v_{2}\right)$
B. $\left(v_{1}+v_{2}\right) / 2$
C. $v_{1}+v_{2}$
D. $\sqrt{ }\left(v_{1}+v_{2}\right)$

Answer (A)

Solution:

Time to travel:
$t_{1}=\frac{x}{2 v_{1}}$ and $t_{2}=\frac{x}{2 v_{2}}$
So,
$v_{\text {avg }}=\frac{\text { Total distance }}{\text { Total Time }}$
$v_{\text {avg }}=\frac{x}{t_{1}+t_{2}}$
$v_{\text {avg }}=\frac{x}{\frac{x}{2 v_{1}}+\frac{x}{2 v_{2}}}$
$v_{\text {avg }}=\frac{2 v_{1} v_{2}}{v_{1}+v_{2}}$
12. If T is the temperature of a gas, then $R M S$ velocity of the gas molecules is proportional to
A. $T^{1 / 2}$
B. $T^{-1 / 2}$
C. T
D. T^{2}

Solution:

We know that:
$v_{r m s}=\sqrt{\frac{3 R T}{M_{0}}}$
So,
$v_{r m s} \propto \sqrt{T}$
13. The period of a pendulum at earth's surface is T. Find the time period of the pendulum at distance (from centre) which is twice the radius of earth.
A. $T / 4$
B. $4 T$
C. $T / 2$
D. $2 T$

Answer (D)

Solution:

We know that :
$T=2 \pi \sqrt{\frac{l}{g}}$
Case 1:
$T=2 \pi \sqrt{\frac{l}{G M / R^{2}}}$
Case 2:
$T^{\prime}=2 \pi \sqrt{\frac{l}{G M / 4 R^{2}}}$
So,

$$
\frac{T^{\prime}}{T}=\frac{2}{1} \Rightarrow T^{\prime}=2 T
$$

14. Let $I_{c m}$ be the moment of Inertia of disc passing through center and perpendicular to its plane. $I_{A B}$ be the moment of inertia about axis $A B$ that is in the plane of disc and $\frac{2 r}{3}$ distance from center. Find $\frac{I_{c m}}{I_{A B}}$?
A. $1 / 4$
B. $18 / 25$
C. $9 / 17$
D. $1 / 2$

Answer (B)

Solution:

Moment of Inertia, $I_{c m}=\frac{M r^{2}}{2}$ (Perpendicular to plane)
$I_{c m}($ in plane $)=\frac{M r^{2}}{4}$
$I_{A B}=\frac{M r^{2}}{4}+M\left(\frac{2}{3} r\right)^{2}$
$I_{A B}=\frac{(9+16) M r^{2}}{36}=\frac{25}{36} M r^{2}$
$\frac{I_{c m}(\text { Perpendicular })}{I_{A B}}=\frac{\frac{1}{2} M r^{2}}{\frac{25}{36} M r^{2}}=\frac{18}{25}$

15. Temperature of hot soup in a bowl goes $98^{\circ} \mathrm{C}$ to $86^{\circ} \mathrm{C}$ in 2 min . The temperature of surrounding is $22^{\circ} \mathrm{C}$. Find the time taken for the temperature of soup to go from $75^{\circ} \mathrm{C}$ to $69^{\circ} \mathrm{C}$. (Assume Newton's law of cooling is valid)
A. 1 min
B. 1.4 min
C. 2 min
D. 3.2 min

Answer (B)

Solution:

We have,

$$
\frac{\Delta \theta}{\Delta t}=-K\left(\frac{\theta_{1}+\theta_{2}}{2}-\theta_{0}\right)
$$

Given, $\theta_{0}=22^{\circ} \mathrm{C}$

$$
\begin{align*}
& \frac{98-86}{2}=-K\left(\frac{98+86}{2}-22\right) \ldots \tag{1}\\
& \frac{75-69}{t_{2}}=-K\left(\frac{75+69}{2}-22\right) \ldots \tag{2}
\end{align*}
$$

From (1) and (2)

$$
t_{2}=\frac{70}{50}=1.4 \mathrm{~min}
$$

16. Electric field is applied along $+y$ direction. A charged particle is travelling along $-\hat{k}$, undeflected. Then magnetic field in the region will be along?
A. $\hat{\imath}$
B. $-\hat{\imath}$
C. $\hat{\jmath}$
D. $-\hat{k}$

Solution:

If the charged particle is moving in both uniform electric and magnetic field with no deflection than force will be zero on charged particle.

$$
\begin{aligned}
& q(\vec{E}+\vec{v} \times \vec{B})=0 \\
& (\vec{v} \times \vec{B})=-\vec{E} \\
& \left(v_{0}(-\hat{k}) \times \vec{B}\right)=-E_{0} \hat{\jmath}
\end{aligned}
$$

\vec{B} should be in $\hat{\imath}$ direction to balance the electrostatic force on the charge particle. (Assuming the given charge to be positive.)
17. When an electron is accelerated by 20 kV , its de-broglie wavelength is λ_{0}. If the electron is accelerated by 40 kV , find its de-Broglie wavelength.
A. $2 \lambda_{0}$
B. $\frac{\lambda_{0}}{2}$
C. $\sqrt{2} \lambda_{0}$
D. $\frac{\lambda_{0}}{\sqrt{2}}$

Answer (D)

Solution:

We know,
$\lambda_{0}=\frac{h}{p}$
$\lambda_{0}=\frac{h}{\sqrt{2 m K}}$
$\lambda_{0}=\frac{h}{\sqrt{2 m e V}}$

Since V doubles.
$\frac{\lambda^{\prime}}{\lambda_{0}}=\sqrt{\frac{V}{2 V}}=\frac{1}{\sqrt{2}}$
$\lambda^{\prime}=\frac{\lambda_{0}}{\sqrt{2}}$
18. Find the equivalent resistance of the given circuit across the terminals of ideal battery.
A. $2 R$
B. $3 R$
C. $4 R$
D. $5 R$

Answer (B)

Solution:

In $2^{\text {nd }}$ part of diagram a connecting wire is nullifying the resistance of parallel resistance thus their new resistance is zero. So, net resistance of circuit is $3 R$
19. For an $A M$ signal, it is given that $f_{\text {carrier }}=10 \mathrm{MHz} \& f_{\text {signal }}=5 \mathrm{kHz}$. Find the bandwidth of the transmitted signal.
A. 5 kHz
B. 10 kHz
C. 2.5 kHz
D. 20 MHz

Answer (B)

Solution:

Bandwidth of amplitude modulated wave is:

$$
\Delta f=2 f_{m}=10 \mathrm{kHz}
$$

20. Let nuclear densities of ${ }_{2}^{4} \mathrm{He}$ and ${ }_{20}^{40} \mathrm{Ca}$ be ρ_{1} and ρ_{2} respectively. Find the ratio $\frac{\rho_{1}}{\rho_{2}}$.
A. $1: 10$
B. $10: 1$
C. $1: 1$
D. $1: 2$

Answer (C)

Solution:

We know radius,
$R=R_{o} A^{\frac{1}{3}}$
Density $=\frac{\text { Mass }}{\text { Volume }}$
Density $=\frac{A}{\frac{4}{3} \pi\left(R_{o} A^{\frac{1}{3}}\right)^{3}}=\frac{1}{\frac{4}{3} \pi R_{o}^{3}}$
Density is independent of A
$\frac{\rho_{1}}{\rho_{2}}=1 \Rightarrow \rho_{1}: \rho_{2}=1: 1$
21. A particle is projected with 0.5 eV kinetic energy in a uniform electric field $\vec{E}=-10 \frac{N}{c} \hat{\jmath}$ as shown in the figure.

Find the angle particle made from the x - axis when it leaves \vec{E}.
A. $\theta=45^{\circ}$
B. $\theta=60^{\circ}$
C. $\theta=30^{\circ}$
D. $\theta=37^{\circ}$

Answer (A)

Solution:

In x-direction:
$v_{x}=v_{0}$
In y-direction:
$a_{y}=\left(\frac{e E}{m_{e}}\right)$
$s_{y}=5 \times 10^{-2} \mathrm{~m}$

$v_{y}^{2}=2 a_{y} s_{y}$
$v_{y}=\sqrt{\frac{2 e E}{m_{e}} s_{y}}$
$\tan \theta=\left(\frac{v_{y}}{v_{x}}\right)$
$K_{i}=0.5 \mathrm{eV}=\frac{1}{2} \frac{m_{e} v_{x}^{2}}{e}$
$v_{x}=\sqrt{\frac{0.5 \times 2 e}{m_{e}}}=\sqrt{\frac{e}{m_{e}}}$
$\tan \theta=\frac{\sqrt{\frac{2 e E}{m_{e}} s_{y}}}{\sqrt{\frac{e}{m_{e}}}}=\sqrt{2 E s_{y}}=\sqrt{2 \times 10 \times 5 \times 10^{-2}}=1$
$\theta=\tan ^{-1} 1=45^{\circ}$
22. Find the ratio of acceleration due to gravity at an altitude $h=R$ to the value at the surface of earth (where $R=$ radius of earth)
A. $1 / 2$
B. $1 / 4$
C. $1 / 8$
D. $1 / 6$

Answer (B)

Solution:

We have,
$\frac{g_{h}}{g}=\left(\frac{R}{R+h}\right)^{2}$
$\frac{g_{h}}{g}=\left(\frac{R}{R+R}\right)^{2}=\frac{1}{4}$
23. Statement 1: Photodiodes are operated in reverse biased.

Statement 2 : Current in forward biased is more than current in reverse bias in $p-n$ diode.
A. Both the statements are true and 2 is the correct explanation of 1.
B. Both the statements are true and 2 is not the correct explanation of 1.
C. Statement 1 is true and statement 2 is false.
D. Statement 2 is true and statement 1 is false.

Answer (B)

Sol. Statement 1 is true as photodiode is used in reverse bias to increase the sensitivity of diode current. Statement 2 is true as diode provides greater resistance in reverse bias.

